Реферат: Основы коксования пека

Основы коксования пека

Введение

Основные виды углеродистого сырья коксохимического (каменноугольного) происхождения, используемого для производства углеграфитовых материалов - каменноугольный пек и пековый кокс. Необходимость расширения и совершенствования их производства диктуется главным образом нуждами черной и цветной металлургии. Пек и пековый кокс используют в качестве:

связующего (пек) в производстве графитированных изделий, в том числе крупногабаритных специальных электродов для большегрузных дуговых сталеплавильных печей, а также углеграфитовых конструкционных материалов; в производстве углеграфитовых блоков повышенной стойкости, безводной легочной массы для доменных печей, смолодоломитовых огнеупоров для футеровки сталеплавильных конверторов;

связующего (пек) и наполнителя (пековый кокс) при получении анодной массы для электролизеров в производстве алюминия;

сырья (пек и пековый кокс) для производства изделий электротехнической промышленности и др.

Возможно вы искали - Реферат: Бенгальские огни

Сырьем для производства пекового кокса является высокотемпературный пек. Явления, происходящие при коксовании пека, представляют собой ряд сложных химических, физических, физико-химических, структурных и термомеханических процессов, сопровождающихся изменением физико-химических свойств исходного вещества - высокотемпературного пека - при переходе его в полукокс и кокс.

Процесс коксования пека в печах можно разделить на отдельные стадии, соответствующие температурным интервалам. Наиболее важная стадия, оказывающая решающее влияние на характер процесса, выход и качество кокса, протекает в температурном интервале 450-600°С. В этой стадии происходит дистилляция легкокипящих фракций, пиролиз основной массы пека с образованием газообразных и жидких продуктов, затвердевание сильновязкого утяжеленного остатка и образование полукокса. Затем в соответствии с повышением температуры происходит выделение летучих веществ, преимущественно богатых водородом, появляются усадочные трещины, коксовый массив отходит от стен камеры и приобретает свойства готового продукта.

Изменение химического состава пека в процессе коксообразования, выражающееся в нарастании содержания углерода и уменьшении водорода, можно проследить по данным об элементном составе:

С Н NSO2

Высокотемпературный пек 92,73 4,42 1,43 0,82 0,60

Полукокс. . . . . 93,81 3,28 1,39 0,68 0,84

Кокс......... 96,52 0,98 1,22 0,58 0,70 .

Некоторая часть азотсодержащих соединений пека при коксовании не изменяется или превращается в аммиак. Значительное количество азота остается в коксе. Сера пека частично выделяется с газом в виде сероводорода, частично распределяется в пековой смоле и коксе в виде сероорганических соединений.

Изменение состава пекококсового газа по мере повышения температуры коксования характеризуется уменьшением содержания метана и резким увеличением содержания водорода. Это указывает на то, что до 500°С протекают процессы пиролиза и крекинга, сопровождающиеся выделением метана, при более высокой температуре основной реакцией становится дегидрирование, которое приводит к образованию продуктов полимеризации и поликонденсации.

Большая часть пековой смолы выделяется до 550°С при малом количестве образовавшегося газа. По-видимому, до этой температуры осуществляется дистилляция термоустойчивых высококипящих фракций пека, в состав которых входят такие соединения, как коронен, пицен и др.

С повышением температуры отбора смолы увеличиваются плотность и молекулярная масса. Следовательно, возрастает содержание более конденсированных ароматических углеводородов.

Нелетучий остаток-полукокс, образовавшийся в период коксования пека, с повышением температуры претерпевает значительные изменения. Меняется элементный состав пека, повышается содержание в нем углерода и уменьшается содержание водорода.

При 600°С и выше отмечается интенсивный рост отношения С/Н, что может свидетельствовать об усилении поликонденсации. До указанной температуры это явление не наблюдается; при исследовании твердых остатков с помощью ЭПР установлена повышенная концентрация ПМЦ (свободных радикалов и неспаренных электронов). По-видимому, при температурах до 600°С происходит максимальное разложение пекового вещества, выражающееся в отщеплении метальных групп и водорода. Возможно, имеет место и деструкция продуктов уплотнения отдельных ароматических циклов, что создает условия для роста ароматических сеток.

Интервал температур 550-600°С характеризуется также увеличением плотности, резким уменьшением электросопротивления и проявлением механических свойств кокса, что можно объяснить активным протеканием процессов внутреннего структурирования его вещества, т.е. упаковкой ароматически высококонденсированных молекул в пакеты.

Можно констатировать, что с повышением температуры нагрева ядра молекул, состоящие из бензольных колец, подобных монослоям в графите, увеличиваются в размере, освобождаются от боковых атомов и групп, слагаются в стопки, образуя структурные единицы высокой степени упорядоченности. Однако их нельзя считать кристаллами, так как они не имеют предельно упорядоченной трехмерной структуры, присущей кристаллитам графита.

Наличие в пеке многих термоустойчивых ароматических углеводородов затрудняет переход от линейной к сотообразной конденсации по сравнению с другими углеродистыми веществами.

При прокаливании и графитировании пекового кокса происходят дальнейшие значительные внутримолекулярные изменения, направленные в сторону повышения упорядоченности структуры, увеличиваются размеры пакетов, количество блочного углерода, заметно уменьшается межплоскостное расстояние. Одновременно сглаживаются различия в свойствах кокса в зависимости от технологических условий - конечной температуры и скорости коксования, продолжительности перестоя.

Особенности исходного сырья сказываются частично на сырых и прокаленных коксах. Высокотемпературный пек из пековой смолы ухудшает способность кокса к уплотнению при прокаливании, поэтому необходимо строго дозировать количество идущих на коксование высокотемпературных пеков, полученных из среднетемпературного пека и пековой смолы.

У нас в стране пековый кокс производят в специальных камерных динасовых печах (рис.1), имеющих некоторые конструктивные отличия от печей для коксования угля. Эти отличия заключаются в лучшей герметизации стен кладки камер коксования больших размерах газоотводящих отверстий в перекрытиях камер и т.д.

Рис.й. Схема пекококсовой печи системы Гипрококса

Печи имеют индивидуальную отопительную систему для каждого обогревательного простенка и рассчитаны на обогрев коксовым газом. Толщина стен 170-200 мм позволяет осуществлять надежную перевязку и герметизацию всех вертикальных швов, выходящих в камеру коксования. Верхний уровень обогрева располагается на высоте 600-800 мм от свода камеры.

Размеры камеры коксования: длина 13120 мм, высота 3000 мм, ширина 450 мм. Температура в контрольных вертикалах с машинной стороны поддерживается на уровне 1220 - 1310°С, с коксовой 1260 - 13400 С.

Размеры камеры коксования: длина 13120 мм, высота 3000 мм, ширина 450 мм. Температура в контрольных вертикалах с машинной стороны поддерживается на уровне 1220 - 1310°С, с коксовой 1260 - 13400 С.

К-во Просмотров: 74
Бесплатно скачать Реферат: Основы коксования пека