Реферат: Использование радиации для повышения продуктивности животных и улучшения качества продукции

Особый интерес при радиационных мутациях представляют те из них, у которых поврежден кодон, необходимый для образования аллостерического центра фермента. Нарушение функций этого центра может снять субстратное ингибирование фермента. В результате фермент активируется, и реакции, катализируемые этим ферментом, идут интенсивнее, чем в норме. На этом основании получены мутанты микроорганизмов с усиленной продукцией того или иного метаболита (антибиотиков, аминокислот и др.).

Облучением культур дрожжей выведены их расы, вырабатывающие в 2 раза больше эргостерина, чем исходные. Такое наследственно закрепленное изменение обмена веществ имеет большое значение для витаминной промышленности.

Комбинированным воздействием радиации и химических мутагенов выведено много штаммов высокоактивных плесневых грибов — продуцентов пенициллина, стрептомицина, ауреомицина, эритромицина и альбомицина, которыми теперь располагает промышленность. Некоторые штаммы дают выход стрептомицина в 20, а пенициллина в 50 раз больше исходных рас. Это позволило организовать промышленное производство антибиотиков и сделало их широко доступными препаратами. Такой положительный опыт распространен и на другие отрасли микробиологической промышленности для получения высокоактивных продуцентов витаминов, различных ферментов и органических кислот.

Значительный интерес представляют изменения вирулентности микроорганизмов и их способность образовывать токсины под действием ионизирующих излучений. Данные изменения могут быть стойкими, закрепленными наследственно. Такие авирулентные мутанты используются для разработки вакцин. Кроме того, изменения вирулентности бактерий и их способности к токсинообразованию могут происходить и при таком облучении бактерий, когда не возникает мутаций.

Возникновение мутаций, как и всякое вероятностное событие, возрастает с увеличением поглощенной дозы. Однако с увеличением дозы возрастает гибель мутаций в облученной популяции, а многие из возникших не выявляются. В микробиологической практике используют обычно дозы, при которых остается 1...5 % выживших микроорганизмов. При радиационной селекции растений часто используют дозы, вызывающие гибель 70 % растений. Среди оставшихся 30 % выживших растений можно наблюдать большое количество мутаций. Абсолютные значения дозы зависят от радиочувствительности взятого организма.

Для радиационного мутагенеза применяют специально созданные исследовательские ядерные реакторы, радионуклидные гамма-установки («Гамма-поле», «Гамма-панорама», «Генетик»), ускорители электронов.

2 Стимулирующее действие ионизирующих излучений

В определенном диапазоне доз ядерные излучения обладают стимулирующим действием. Такая стимуляция обнаруживается у всех биологических объектов, начиная с одноклеточных и кончая высокоорганизованными растениями и животными. Впервые эффект радиационной стимуляции был получен на растениях и описан М. Мальдинеем и К. Тувиненом в 1989 г., т. е. всего лишь через 3 года после открытия рентгеновских лучей. Ускорение прорастания семян, облученных рентгеновскими лучами, привлекло внимание многих исследователей, работавших с ионизирующими излучениями. В последующие годы появилось большое количество работ, посвященных радиационной стимуляции растений. Среди них предпосевное гамма-облучение семян сельскохозяйственных растений, овощных культур, кормовых трав с целью повышения урожая и улучшения качества продукции. Так, семена салата имеют всхожесть 25...35 %. При гамма-облучении их всхожесть увеличивается до 65 %. Семена лаванды при облучении дозой 10 Гр на 30-й день повышают всхожесть с 7 до 28 %. Внедрение гамма-облучения семян в Молдавии позволило получить за 3 года испытаний (1972...1974 гг.) 8,763 т дополнительной продукции зерна кукурузы, 3,703 т подсолнечника, 5,354 т сахарной свеклы.

За 4 года производственного испытания предпосевного гамма-облучения семян в Павлодарской области Казахстана средние прибавки урожая по таким культурам, как гречиха, кукуруза, подсолнечник, колебались в пределах 10...27 %.

В Болгарии внедрен в практику метод предпосевного гамма-облучения семян томатов, выращиваемых в условиях закрытого грунта. Метод позволяет ускорить сбор урожая на 10... 12 дней.

Облучение семян в стимулирующих дозах перед их посевом приводит не только к ускорению прорастания семян, но и к увеличению урожая и улучшению его качества. Хорошо известно, что семена в момент их прорастания очень восприимчивы к действию различных физических и химических агентов, которые способны влиять на их развитие. Именно на этом основаны такие известные методы их обработки, как яровизация, прогрев УВЧ, намачивание в растворах ростовых веществ, микроэлементов, приводящих к ускорению развития и повышению урожая.

Сравнительный анализ конечных эффектов применения всех этих методов, так же как и гамма-облучения, показывает, что они однотипны. Применение любого из этих методов при неблагоприятных условиях увеличивает урожай на 10... 12 %. Однако метод гамма-облучения имеет ряд преимуществ:

простота и постоянство действия облучательных установок, для работы на которых не требуются высококвалифицированные специалисты;

равномерность воздействия на семена облучения;

точность дозировки при облучении;

возможность обработки больших объемов материала.

Изучая процесс радиационной стимуляции на молекулярно-био-химическом уровне, радиобиологи показали, что облучение растений приводит к активации многих процессов обмена: усиливается синтез нуклеиновых кислот, белков, гормонов, повышается активность некоторых ферментов, изменяется проницаемость мембран, усиливается поступление в растения питательных веществ. Все это приводит в итоге к ускорению роста и развития растений. Однако пусковой момент, по мнению А. М. Кузина, — дерепрессия и активизация под влиянием радиации определенной группы генов. Вещества, которые запускают весь процесс активации генома, так называемые триггер-эффекторы, могут не только образовываться в клетке в результате измененного под действием облучения метаболизма, но и быть привнесенными извне — из других тканей, внешней среды.

В 1976 г. А. М. Кузин высказал гипотезу, что при лучевой стимуляции в качестве триггер-эффекторов могут выступать хиноны, образующиеся из полифенолов в результате радиационно-химических реакций окисления и активации полифенолоксидаз. Обнаружение этих веществ практически возможно только при больших дозах облучения, когда они образуются в высоких концентрациях (10-3 ... 10-4 М), угнетающих развитие, поэтому их первоначально и назвали радиотоксинами. В малых же концентрациях
(10-7 ...10-8 M) эти вещества действуют стимулирующе.

Как известно, основная поглощенная объектом энергия ионизирующего излучения реализуется в образовании высокореактивных свободных радикалов, что способствует усилению первичных окислительных процессов. Свободные радикалы в значительных количествах образуются в белках и липидах биомембран, что приводит к получению липидных перекисей и активных хинонов. Происходящие при этом конформационные сдвиги во внутренней структуре мембран клетки изменяют не только ее проницаемость, но и активность мембранных ферментов. Одним из таких наиболее хорошо изученных ферментов мембран является аденилатциклаза (АЦ), регулирующая уровень циклического аденозинмонофосфата (ЦАМФ) в организме. ЦАМФ влияет на скорость фосфорилирования белков, а также является посредником в действии многих гормонов на геном клетки. Широко известно, что ростовые гормоны, фитогормоны дерепрессируют гены в низких дозах, а в повышенных концентрациях действуют как ингибиторы, как токсические вещества. Хиноны, воздействуя на мембраны, активируют АЦ и через ЦАМФ вызывают дерепрессию генома. Активация генов в облученных объектах возможна и в результате непосредственного действия триггер-эффекторов на хроматин ядра. Так, еще в 1966 г. на изолированных клеточных ядрах было показано, что ортохиноны (например, допахинон) быстро проникают в ядра, соединяются с гистонами и тем самым снимают неспецифическую блокаду генома этими белками. Как следствие происходит усиленный синтез информационных РНК, белков, ферментов и фитогормонов, индуцирующих метаболические процессы. Это в свою очередь существенно сокращает фазы клеточного цикла на ранних стадиях развития. Так, например, по данным И. Н. Гудкова (1976 г.), гамма-облучение семян кукурузы в дозах от 5 до 10 Гр вызывало в клетках увеличение на 2% митотической активности и уменьшение длительности цикла за счет G-1 и G-2 фаз с 13,8 до 10,4 ч.

Таким образом, образование неспецифических триггер-эффекторов хиноидной природы составляет один из важных механизмов общего стимулирующего действия излучения. Повышенный уровень триггер-эффекторов вызывает дерепрессию генома не только у клеток верхушечной точки роста, но и в боковых почках, что ведет к увеличению числа боковых побегов, усиленному ветвлению у стимулированных растений.

Многолетние экспериментальные испытания в полевых и производственных условиях Поволжья (В. И. Костин, 1989 г.) показали, что при облучении семян яровой пшеницы дозой в пределах 2,5...5 Гр, сахарной свеклы 10... 12 Гр, томатов и огурцов 2,5...3 Гр отмечается активация ферментов из класса оксидоредуктаз. Эти ферменты осуществляют гидролиз запасных веществ, в частности альфа- и бета-амилаз при прорастании семян, особенно на вторые-третьи сутки проращивания. В результате наблюдается более высокая степень расходования питательных веществ. Как ответная реакция на раздражимость возрастает интенсивность дыхания, увеличиваются активность фермента каталазы и содержание редуцирующих сахаров.

Наряду с увеличением урожая в результате предпосевной обработки в растениях активизируется накопление органических веществ, которые выработались в процессе эволюции растений данного вида: белка для пшеницы, сахарозы для сахарной свеклы. Усиливается минеральное питание. Следует отметить, что растения, выращенные из облученных семян по интенсивной технологии, полнее используют минеральные удобрения.

Проведены многочисленные исследования по предпосевному облучению клубней, корневищ и черенков. Результаты работ в этом направлении показали, что гамма-облучение находящегося в покое посадочного материала в оптимальных дозах вызывает более быстрое и обильное пробуждение точек роста, корнеобразования. Так, максимальная стимуляция картофеля происходит при облучении клубней в дозах от 0,5 до 5 Гр. Массовые испытания, проведенные в производственных условиях ряда хозяйств Московской, Ленинградской, Орловской и других областей, показали, что гамма-облучение дозой 3 Гр или ускоренными электронами дозой 1 Гр клубней (сорт Лорх) за 2...6 сут до посадки обеспечивает стабильное повышение урожая картофеля на 18...25 %. Одновременно наблюдали увеличение содержания крахмала.

При предпосевном облучении корневищ мяты (5 Гр) также наблюдали пробуждение значительно большего числа глазков и образование побегов, прибавку зеленой массы по сравнению с контролем.

Облучение черенков ягодных культур: крыжовника в дозе 5 Гр, черной и красной смородины (20 Гр) — приводило к их лучшему укоренению, большему годовому приросту, увеличению содержания хлорофилла и в конечном итоге увеличению урожая крыжовника на 60 %, черной смородины на 16, красной смородины на 63 %. Облучение усов земляники дозой от 5 до 15 Гр при последующем тепличном культивировании приводит к увеличению урожая ягод на 30 %.

Механизм стимулирующего действия ионизирующего излучения в данном случае такой же, как при предпосевном облучении семян. На это указывают работы по выделению хинонов из клубней картофеля.

Значительный практический интерес представляет облучение черенков при прививках. Гамма-облучение черенков или подвоя виноградной лозы на гамма-установке «Стерилизатор» дозой порядка 10...30 Гр значительно увеличивает выход полноценных прививок — от 11 до 34 %. Вследствие дерепрессии генома усиливаются процессы роста и деления клеток, что будет способствовать более интенсивному срастанию тканей привоя с подвоем. При этом выражено интенсивное деление клеток в камбиальном слое на стыках срастания подвоя с привоем, изменение активности фосфотаз.

При прививках используют также явление радиационного преодоления тканевой несовместимости подвоя с привоем. Использование ионизирующего излучения для преодоления иммунологической несовместимости широко исследовалось на животном организме в связи с задачами пересадки тканей и органов в медицинской практике.

Облучение подвоя (2...3) 10-2 Гр снижает антителогенез в ответ на проникновение чуждых антигенов привоя, что задерживает реакцию отторжения и дает возможность размножающимся клеткам привоя образовать общую ткань с подвоем. В результате возникает иммунологическая толерантность облученного реципиента к трансплантируемой ткани.

Эта принципиально новая технология позволила чисто радиобиологическим методом заменить чрезвычайно трудоемкие ручные операции в виноградарстве современными механизированным и автоматизированным процессами, улучшить качество продукции и повысить ее выход в производственных условиях.

К-во Просмотров: 576
Бесплатно скачать Реферат: Использование радиации для повышения продуктивности животных и улучшения качества продукции