Реферат: К теории полета лыжника при прыжках с трамплина

Кандидат педагогических наук, доцент Н.А. Багин, Ю.И. Волошин, доктор физико-математических наук, доцент В.П. Евтеев, Великолукский государственный институт физической культуры

После разгона и правильно выполненного отталкивания от стола отрыва результат прыжка с трамплина определится полетом лыжника в воздухе под действием тяжести и аэродинамических сил.

Рассмотрение полета в спортивной литературе [2, 4] часто носит нестрогий, качественный характер, основанный главным образом на результатах эксперимента и анализа мировых рекордов. В настоящей работе получены простые формулы, позволяющие тренеру количественно проанализировать зависимость длины прыжка от начальной скорости полета, угла вылета со стола отрыва, геометрии трамплина, аэродинамических качеств полета и скорости ветра.

Выберем начало координат на краю стола отрыва и направим горизонтальную ось Х вдоль трамплина, а ось Y вертикально вверх.

Выпишем уравнения движения центра тяжести лыжника в координатной форме:

Возможно вы искали - Курсовая работа: Проектирование АТП

Vx= -(KxVx/V+KyVy/V) (V+U0Vx/V)2, (1)

Vy= -g-(KxVy/V+KyVx/V) (V+U0Vx/V)2, (2)

где Vx, Vy - проекции скорости полета на координатные оси, V - абсолютная величина скорости, U0 - алгебраическая скорость горизонтального ветра, положительная при встречном ветре и отрицательная при попутном.

Kx=? rCxS/m, Ky=? rCyS/m - аэродинамические числа, имеющие размерность, обратную длине, r - плотность воздуха; Сx - коэффициент лобового сопротивления; Cy - коэффициент подъемной силы; S - фронтальная площадь лыжника с лыжами; m - масса лыжника с лыжами. Точкой обозначены производные по времени.

Уравнения (1) и (2) нелинейные. Упростить их анализ и получить приближенные решения удобно переходом к функциям комплексного переменного. Ранее этот прием успешно применялся одним из авторов к системам нелинейных уравнений небесной механики [3]. Он позволяет свести систему двух уравнений к одному. С этой целью введем в рассмотрение комплексную скорость полета (КСП): W=Vx+iVy, (3)

Похожий материал - Курсовая работа: Перспективы развития спортивного туризма в Самарской области

где i - мнимая единица и комплексное аэродинамическое число K=Kx+iKy. (4)

Умножая уравнение (2) на мнимую единицу и складывая с первым уравнением, получим с учетом (3) и (4) следующие уравнения для КСП:

W=-ig-K(V+U0(W+W)/2V)2W/V, (5)

где чертой сверху обозначены комплексно-сопряженные величины.

Полет лыжника состоит из взлета на вершину траектории и спуска с нее. Рассмотрим их поэтапно. Запишем уравнение (5) в виде:

Очень интересно - Курсовая работа: Исследование развития психомоторных способностей старших школьников средствами нетрадиционных видов гимнастики

W=-ig-K(V+U0cosj)2W/V. (6)

За время взлета, измеряемого несколькими десятыми долей секунды, скорость полета изменяется мало, а полярный угол изменяется от угла вылета j0 в несколько градусов до нуля на вершине траектории. Поэтому мы не совершим большой ошибки, если заменим в (6) скорость V начальной скоростью V0 и затем усредним полученный коэффициент перед W по интервалу изменения полярного угла. Тогда уравнение (6) превращается в дифференциальное линейное уравнение первого порядка с постоянными коэффициентами:

W=-ig-KC0W, (7)

где C0=V0+2U0sinj 0/j0+U02(1+sin2j0/2j0/2V0.

Решение уравнения (7) имеет вид:

Вам будет интересно - Реферат: Рекреационные ресурсы Челябинской области

W=W0exp(-KC0t)-ig(1-exp(KC0t))/KC0. (8)

На протяжении всего взлета KxC0t<<1, поэтому, разлага показательные функции в ряд и ограничиваясь первыми двумя членами разложения, получим из (8) следующее упрощенное выражение для КСП:

W=W0(1-KC0t)-igt. (9)

Выделим в (9) действительную и мнимую части. В результате будем иметь:

Vx = V0cosj0 - axt, (10)

Похожий материал - Статья: Взаимообусловленность общей физической работоспособности и типов энергообеспечения мышечной деятельности

Vy = V0sinj0 - (g-ay)t, (11)

ax = (Kx cosj0 + Ky sinj0)C0V0, (12)

ay = (Kycosj0 - Kxsinj0)C0V0, (13)

В приближении (10), (11) движения центра тяжести лыжника вдоль координатных осей равнозамедленные. Аэродинамические ускорения даются формулами (12), (13).

К-во Просмотров: 66