Реферат: Усложнение решающего правила при управлении в задачах распознавания образов

Бекмуратов К.А.

Рассматривается один из возможных принципов усложнения решающего правила непрерывного пространства признаков, порождаемого опорными объектами конкретного образа. Предложена процедура нахождения предельного значения размерности признакового пространства, в котором возможно кусочно-линейное разделение образов и гарантированы требуемые качество и надежность распознавания, необходимые в системах управления.

В работе [1] описан метод формирования пространства непрерывных признаков, приводящий к безошибочному разделению образов. Введено понятие непрерывного признака и показано, что если набирать пространство только из определенных в [1] признаков, то можно достичь безошибочного разделения образов.

В данной работе так же, как и в [2], рассмотрим случай, когда в пространстве непрерывных признаков размерности n безошибочное разделение обучающей последовательности невозможно.

Пусть на некотором множестве мощности объектов определены подмножества при , представляющие собой образы на обучающей выборке

Возможно вы искали - Курсовая работа: Разработка технологического процесса изготовления детали в САПР ТехноПро

Допустим, что - подмножество на , соответствующее конкретному образу , а - подмножество на , соответствующее остальным образом

Требуется с использованием обучающую выборки найти решающее правило , указывающее принадлежность любого объекта из одному

из заданных образов или с вероятностью ошибки, не превышающей , достигаемой с надежностью (1-), и определить целесообразности усложнения решающих правил при синтезе непрерывных признаковых пространств.

Если обучающая последовательность не может быть безошибочно разделима выбранным решающим правилом, то в общем случае справедлива теорема Вапника - Червоненкиса [3], смысл которой состоит в том, что если в n-мерном пространстве признаков решающее правило совершает ошибок при классификации обучающей последовательности длины , то с вероятностью можно утверждать, что вероятность ошибочной классификации составит величину, меньшую ,

,

Похожий материал - Реферат: Система научно-технического перевода (пример перевода программой PROMT Гигант)

где N- число всевозможных правил заданного класса, которое можно построить в пространстве заданной размерности.

Предположим, что в процессе обучения из последовательно поступивших непрерывных свойств относительно опорных объектов синтезирована подсистема непрерывных признаков. В зависимости от состава случайной и независимой выборки процесс обучения может остановиться при любом значении n, но если разделение конкретной обучающей выборки наступило в n-мерном пространстве, то число N всевозможных решающих правил в классе не должно превышать числа всех подмножеств множества, состоящего из элементов, т.е.

,

где

.

Очень интересно - Реферат: Разговор с машиной: мифы и реалии речевого управления

Логарифмируя получим

(1)

Если учесть , то (1) принимает вид

, (2)

где можно оценить в виде

Вам будет интересно - Реферат: Чемпионаты мира по программированию

(3)

Подставляя (3) в (2), получаем

(4)

Используя теорему Вапника-Червоненкиса [3], можно вычислить предельную размерность пространства

, (5)

Похожий материал - Контрольная работа: Створення власних бібліотек компонентів в Protel 99

которая при заданных гарантирует требуемые e и h.

Пусть вычислено максимально допустимое значение размерности пространства в виде (5) и в этом пространстве фиксирована линейная решающая функция

(6)

Далее, для того чтобы в процессе обучения синтезировать пространство, в котором линейное решающее правило (6) безошибочно разделило бы обучающую выборку длины , и при этом размерность пространства не превышала бы , необходимо на признаки наложить дополнительные требования. Зная предельную размерность простанства (8), можно оценить минимально допустимую разделяющую силу каждого выбираемого признака в виде

К-во Просмотров: 109