Реферат: Влияние физических нагрузок на опорно-двигательный аппарат на примере плавания

Кроме того, известна и прямая функциональная связь работающих скелетных мышц и сердца посредством гуморальной (т. е. через кровь) регуляции. Установлено, что на каждые 100 мл повышения потребления кислорода мышцами при нагрузке, отмечается рост минутного объема сердца на 800 мл.

Не исключено, что ритмические сокращения мышц (при равномерной ходьбе и беге) передают свою информацию по моторно-висцеральным путям сердечной мышце и как бы диктуют ей физиологически правильный ритм.

Наконец, без мышц невозможен был бы процесс познания, так как, согласно исследованиям И. М. Сеченова, все органы чувств так или иначе связаны с деятельностью различных мышц.

Кости являются твердой опорой мягких тканей тела и рычагами, перемещающимися силой сокращения мышц. Кости в целом теле образуют его скелет. Кость покрыта снаружи надкостницей. В ней различают два слоя - наружный и внутренний. Наружный, фиброзный слой, богаче внутреннего кровеносными сосудами и нервами. В фиброзном слое имеется сеть лимфатических капилляров, лимфатические сосуды, и нервы кости, которые проходят через питательные отверстия. Внутренний, костеобразующий (остеогенный) слой богат клетками (остеобластами), формирующими кость. Надкостницей не покрыты лишь суставные поверхности кости; их покрывает суставной хрящ. По форме различают длинные кости, короткие и плоские. Ряд костей имеет внутри полость, наполненную воздухом; такие кости называют воздухоносными, или пневматическими.

Некоторые кости конечностей напоминают по строению трубку и называются трубчатыми. В длинных костях различают концы и среднюю часть - тело. Конец, который располагается ближе к туловищу, называют проксимальным концом, а конец этой же кости, занимающий в скелете более отдаленное от туловища положение, называют дистальным концом. На поверхности костей имеются различной величины и формы возвышения, углубления, площадки, отверстия: отростки, выступы, ости, гребни, бугры, бугорки, шероховатые линии и ряд других образований. В связи с особенностями процесса развития костей дистальному, как и проксимальному, суставному концу кости дают название эпифиза, средней части кости – диафиза и каждому концу диафиза - метафиза (meta - позади, после).

Возможно вы искали - Контрольная работа: Концепции и законы естествознания

В течение всего периода детства и юности (до 18-25 лет) между эпифизом и метафизом сохраняется прослойка хряща (пластинка роста) - эпифизарный хрящ; за счет размножения его клеток кость растет в длину. После окостенения участок кости, заместивший этот хрящ, сохраняет название метафиза. На распиле почти каждой кости можно различить компактное вещество, составляющее поверхностный слой кости, и губчатое вещество, образующее в кости более глубокий слой. В середине диафиза трубчатых костей имеется различной величины костномозговая полость, в которой, как и в ячейках губчатого вещества, находится костный мозг. Губчатое вещество костей свода черепа, залегающее между двумя (наружной и внутренней) пластинками компактного вещества, получает название диплоэ (двойное).

Кости делят на: кости туловища, кости головы, составляющие в совокупности череп, кости верхних конечностей и кости нижних конечностей.

Все виды соединений костей делят на две группы: непрерывные и прерывные.

Непрерывное соединение (фиброзное соединение) – это такой вид соединения, при котором кости как бы сращены между собой посредством того или иного вида соединительной ткани. В зависимости от рода ткани, соединяющей рядом лежащие кости, непрерывные соединения делят на: соединения посредством плотноволокнистой соединительной ткани - синдесмоз, или соединительнотканное соединение; соединения посредством хряща - хрящевое соединение, иначе синхондроз, или собственно хрящевое соединение костей; соединение посредством костной ткани - синостоз.

Прерывное соединение костей, сустав (синовиальное соединение) является подвижным сочленением двух или нескольких костей с наличием между ними щелевидной суставной полости.

Похожий материал - Реферат: Технология производства куриных яиц

3 Влияние физической тренировки на опорно-двигательный аппарат

3.1 Изменение опорно-двигательного аппарата при тренировке

Скелетная мускулатура – главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опорой для скелета. Например, при патологических искривлениях позвоночника, деформациях грудной клетки (а причиной тому бывает слабость мышц спины и плечевого пояса) затрудняется работа легких и сердца, ухудшается кровоснабжение мозга и т. д. Тренированные мышцы спины укрепляют позвоночный столб, разгружают его, беря часть нагрузки на себя, предотвращают "выпадение" межпозвоночных дисков, соскальзывание позвонков.

Физические упражнения действуют на организм всесторонне. Так, под влиянием физических упражнений происходят значительные изменения в мышцах. Если мышцы обречены на длительный покой, они начинают слабеть, становятся дряблыми, уменьшаются в объеме. Систематические же занятия физическими упражнениями способствуют их укреплению. При этом рост мышц происходит не за счет увеличения их длины, а за счет утолщения мышечных волокон. Сила мышц зависит не только от их объема, но и от силы нервных импульсов, поступающих в мышцы из центральной нервной системы. У тренированного, постоянно занимающегося физическими упражнениями человека, эти импульсы заставляют сокращаться мышцы с большей силой, чем у нетренированного.

Под влиянием физической нагрузки мышцы не только лучше растягиваются, но и становятся более твердыми. Твердость мышц объясняется, с одной стороны, разрастанием протоплазмы мышечных клеток и межклеточной соединительной ткани, а с другой стороны – состоянием тонуса мышц.

Занятия физическими упражнениями способствуют лучшему питанию и кровоснабжению мышц. Известно, что при физическом напряжении не только расширяется просвет бесчисленных мельчайших сосудов (капилляров), пронизывающих мышцы, но и увеличивается их количество. Так, в мышцах людей, занимающихся физической культурой и спортом, количество капилляров значительно больше, чем у нетренированных, а следовательно, у них кровообращение в тканях и головном мозге лучше. Еще И. М. Сеченов – известный русский физиолог – указывал на значение мышечных движений для развития деятельности мозга.

Очень интересно - Контрольная работа: Биохимические основы органолептики: вкус и запах

Как говорилось выше, под воздействием физических нагрузок развиваются такие качества как сила, быстрота, выносливость.

Лучше и быстрее других качеств растет сила. При этом мышечные волокна увеличиваются в поперечнике, в них в большом количестве накапливаются энергетические вещества и белки, мышечная масса растет.

Регулярные физические упражнения с отягощением (занятия с гантелями, штангой, физический труд, связанный с подъемом тяжестей) достаточно быстро увеличивает динамическую силу. Причем сила хорошо развивается не только в молодом возрасте, и пожилые люди имеют большую способность к ее развитию.

Физические тренировки также способствуют развитию и укреплению костей, сухожилий и связок. Кости становятся более прочными и массивными, сухожилия и связки крепкими и эластичными. Толщина трубчатых костей возрастает за счет новых наслоений костной ткани, вырабатываемой надкостницей, продукция которой увеличивается с ростом физической нагрузки. В костях накапливается больше солей кальция, фосфора, питательных веществ. А ведь чем более прочность скелета, тем надежнее защищены внутренние органы от внешних повреждений.

Увеличивающаяся способность мышц к растяжению и возросшая эластичность связок совершенствуют движения, увеличивают их амплитуду, расширяют возможности адаптации человека к различной физической работе.

Вам будет интересно - Доклад: Aulophorus furcatus

Физическая работа делится на два вида: динамическую и статическую. Динамическая работа выпол­няется тогда, когда в физическом смысле происхо­дит преодоление сопротивления на определенном расстоянии. В этом случае (например, при езде на велосипеде, подъеме на лестницу или в гору) работа может быть выражена в физических единицах (1 Вт = 1 Дж/с = 1 Нм/с). При положительной ди­намической работе мускулатура действует как «дви­гатель», а при отрицательной динамической работе она играет роль «тормоза» (например, при спуске с горы). Статическая работа производится при изо­метрическом мышечном сокращении. Так как при этом не преодолевается никакое расстояние, в физи­ческом смысле это не работа; тем не менее, организм реагирует на нагрузку физиологически напряженн­ей. Проделанная работа в этом случае измеряется как произведение силы и времени.

Физическая активность вызывает немедленные реакции различных систем органов, включая мы­шечную, сердечно-сосудистую и дыхательную. Эти быстрые адаптационные сдвиги отличаются от адап­тации, развивающейся в течение более или менее длительного срока, например в результате трениро­вок. Величина быстрых реакций служит, как правило, непосредственной мерой напряжения.

Немедленные реакции обусловлены изменением большого количества параметров, в частности, изменением мышечного кровоснабжения. В покое кровоток в мыш­це составляет 20- 40 мл - мин - ' • кг - '. При экст­ремальных физических нагрузках эта величина су­щественно возрастает, достигая макси­мума, равного 1,3 л-мин - 1 •кг - 1 у нетренирован­ных лиц и 1,8 л-мин - ' -кг - ' у лиц, тренированных на выносливость. Кровоток усиливается не мгно­венно с началом работы, а постепенно, в течение не менее 20-30 с; этого времени достаточно, чтобы обеспечить кровоток, необходимый для выполнения легкой работы. При тяжелой динамической работе, однако, потребность в кислороде не может быть полностью удовлетворена, поэтому возрастает доля энергии, получаемой за счет анаэробного метабо­лизма.

Обмен веществ в мышце. При легкой работе получение энергии происходит по анаэробному пути только в течение короткого переходного периода после начала работы; в дальнейшем метаболизм осуществляется полностью за счет аэробных реакций с использованием в качестве субстратов глюкозы, а также жирных кислот и глицерола. В отличие от этого во время тяжелой работы получение энергии частично обеспечивается анаэробными процессами. Сдвиг в сторону анаэроб­ного метаболизма (приводящего к образованию молочной кислоты) происходит в основном из-за недостаточности артериального кровотока в мыш­це, или артериальной гипоксии. Кроме этих «узких мест» в процессах энергообеспечения и тех, что временно возникают сразу же после начала работы, при экстремальных нагрузках образуют­ся «узкие места», связанные с активностью фермен­тов на различных этапах метаболизма. При накоп­лении большого количества молочной кислоты на­ступает мышечное утомление. После начала работы требуется некоторое время для увеличения интенсивности аэробных энергети­ческих процессов в мышце. В этот период дефицит энергии компенсируется за счет легкодоступных анаэробных энергетических резервов (АТФ и креатин-фосфата). Количество макроэргических фосфатов невелико по сравнению с запасами гликогена, однако они незаменимы как в течение указанного периода, так и для обеспечения энергией при кратковременных перегрузках во время выпол­нения работы.

Во время динамической работы происходят су­щественные адаптационные сдвиги в работе сердеч­но-сосудистой системы. Сердечный выброс и кровоток в работающей мышце возрастают, так что кровоснабжение более полно удовлетворяет по­вышенную потребность в кислороде, а образующее­ся в мышце тепло отводится в те участки организма, где происходит теплоотдача.

Похожий материал - Курсовая работа: Генетически модифицированные организмы в колбасных изделиях

Во время легкой работы с постоянной нагрузкой частота сокращений сердца возрастает в течение первых 5-10 мин и достигает постоянного уровня; это стационарное состояние сохраняется до завершения работы даже в течение нескольких часов. Во время тяжелой работы, выполняемой с постоянным усили­ем, такое стабильное состояние не достигается; ча­стота сокращений сердца увеличивается по мере утомления до максимума, величина которого не­одинакова у отдельных лиц (подъем, обусловленный утомлением). Даже после завершения работы частота сердеч­ных сокращений изменяется в зависимости от имев­шего место напряжения. После легкой работы она возвращается к первоначальному уров­ню в течение 3-5 мин; после тяжелой работы период восстановления значительно дольше – при чрезвы­чайно тяжелых нагрузках он достигает нескольких часов. Другим критерием может служить общее число пульсовых ударов свыше начальной частоты пульса в течение периода вос­становления; этот показатель служит мерой мышечно­го утомления и, следовательно, отражает нагрузку, потребовавшуюся для выполнения предшествую­щей работы.

Ударный объем сердца в начале работы возрастает лишь на 20- 30%, а после этого сохраняется на постоянном уровне. Он немного падает лишь в случае максимального напряжения, когда частота сокращений сердца столь велика, что при каждом сокращении сердце не успевает целиком заполниться кровью. Как у здорового спортсмена с хорошо тренированным сердцем, так и у человека, не занимающегося спортом, сердечный выброс и частота сокращений сердца при работе изменяются приблизительно пропорционально друг другу, что обусловлено этим относительным по­стоянством ударного объема.

При динамической работе кровяное артериальное давление изменяется как функция выполняемой работы. Систо­лическое давление увеличивается почти пропорци­онально выполняемой нагрузке, достигая приблизи­тельно 220 мм рт. ст. при нагрузке 200 Вт. Диастолическое давление изменяется лишь незначи­тельно, чаще в сторону снижения. В системе кровообращения, функционирующей под низким давлением (например, в правом предсердии) давление крови во время работы увеличивается мало; отчетливое его повышение в этом участке является патологией (например, при сердечной не­достаточности).

Потребление организмом кислорода возрастает пропорционально величине и эффек­тивности затрачиваемых усилий. При легкой работе достигается стационарное состояние, когда потреб­ление кислорода и его утилизация эквивалентны, но это происходит лишь по прошествии 3-5 мин, в течение которых кровоток и обмен ве­ществ в мышце приспосабливаются к новым требо­ваниям. До тех пор пока не будет достигнуто стационарного состояния, мышца зависит от неболь­шого кислородного резерва, который обеспечивается 02 , связанным с миоглобином, и от способ­ности извлекать больше кислорода из крови. При тяжелой мышечной работе, даже если она выполня­ется с постоянным усилием, стационарное состояние не наступает; как и частота сокращений сердца, потребление кислорода постоянно по­вышается, достигая максимума.

К-во Просмотров: 245