Реферат: Квадратные формы

Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

Определение 10.1. Квадратичной формой действительных переменных х1, х2,…,хn называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.

Примеры квадратичных форм:

(n = 2),

(n = 3). (10.1)

Возможно вы искали - Реферат: Договор об образовании СССР

Напомним данное в прошлой лекции определение симметрической матрицы:

Определение 10.2. Квадратная матрица называется симметрической, если , то есть если равны элементы матрицы, симметричные относительно главной диагонали.

Свойства собственных чисел и собственных векторов симметрической матрицы:

1) Все собственные числа симметрической матрицы действительные.

Доказательство (для n = 2).

Похожий материал - Курсовая работа: Фондовая биржа основные принципы деятельности, функции и роль в экономике

Пусть матрица А имеет вид: . Составим характеристическое уравнение:

(10.2) Найдем дискриминант:

следовательно, уравнение имеет только действительные корни.

2) Собственные векторы симметрической матрицы ортогональны.

Доказательство (для n = 2).

Очень интересно - Реферат: Программная реализация модуля регистрации пользователей лабораторного стенда в лаборатории АСУТП

Координаты собственных векторов и должны удовлетворять уравнениям:

Следовательно, их можно задать так:

. Скалярное произведение этих векторов имеет вид:

По теореме Виета из уравнения (10.2) получим, что Подставим эти соотношения в предыдущее равенство: Значит, .

Замечание. В примере, рассмотренном в лекции 9, были найдены собственные векторы симметрической матрицы и обращено внимание на то, что они оказались попарно ортогональными.

Вам будет интересно - Реферат: Martin Luther King 2 Essay Research Paper

Определение 10.3. Матрицей квадратичной формы (10.1) называется симметрическая матрица . (10.3)

Таким образом, все собственные числа матрицы квадратичной формы действительны, а все собственные векторы ортогональны. Если все собственные числа различны, то из трех нормированных собственных векторов матрицы (10.3) можно построить базис в трехмерном пространстве. В этом базисе квадратичная форма будет иметь особый вид, не содержащий произведений переменных.

Приведение квадратичной формы к каноническому виду

Определение 10.4. Каноническим видом квадратичной формы (10.1) называется следующий вид: . (10.4)

Покажем, что в базисе из собственных векторов квадратичная форма (10.1) примет канонический вид. Пусть

Похожий материал - Реферат: William ShakespeareS Othello Essay Research Paper The

- нормированные собственные векторы, соответствующие собственным числам λ1,λ2,λ3 матрицы (10.3) в ортонормированном базисе . Тогда матрицей перехода от старого базиса к новому будет матрица

. В новом базисе матрица А примет диагональный вид (9.7) (по свойству собственных векторов). Таким образом, преобразовав координаты по формулам:

,

получим в новом базисе канонический вид квадратичной формы с коэффициентами, равными собственным числам λ1, λ2, λ3:

К-во Просмотров: 75